MSci 4261 ELECTROMAGNETISM

LECTURE NOTES IX

Here we discuss the electromagnetic fields produced by the motion of charged particles.

9.1 Fields From a Static Source If the source charge-current density j# is independent of time, i.e., it is
static, then the resulting fields will also be time-independent:
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which is just the Ampére-Biot-Savart law.
9.2 Fields Produced by a Moving Charged Particle

Suppose that the source of the fields is a point particle carrying a charge ¢ which follows the trajectory
r = r(t). Then the source densities are
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where u=r = %. If we recall that the particle’s 4-velocity U* is given by
UF = (U° = yue, U =7,u) = 74(c, 1)

these may be combined to give
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To make this manifestly covariant, we introduce the proper time 7 along the particle’s trajectory, i.e., the
time which would be measured out by a clock moving with the particle. As the particle moves, its position
(in the original frame, K say) is given by r(t), but also the time-interval dr is related to dz° by
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so that we may write

i"(z) = cq / dr UM (r)6®[z — ()],
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where z is the 4-vector with components 2%, and r®(7) = [ct,r(t)], U® = [yuc, You]. This follows from
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For the fields we then have (applying out-going boundary conditions):
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The delta-function then ensures that the field at x is determined by what happens on the trajectory of the
particle only where r(7) is light-like separated from z. This means that the point r(7) lies on the light- cone
with its vertex at x. There are two such points, one in the past of z, one to the future: the theta-function
then picks out the unique point at which the trajectory crosses the past light-cone with vertex at z. When
we come to evaluate [ dr U(7)d[f(7)] there would in general be a sum over contributions from each of the
roots of f =0, but in the present case there is thus only the one contributing root, and we have
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where 79 is defined by
[z —7(10)>=0 and 2°>1r%).

This is then manifestly covariant.
9.3 The Liénard-Wiechert Potentials

We can render this last expression more useful as follows. The light-cone condition means
[z — r(0)]* = [2° —r%(r0)]* = [x — x(10)]* = 0,

or in terms of R = |x — r(79)|,
2% —r%(n) = R,

where we have used the condition z° > r%(7y) to fix the sign. Note that this is a complicated equation
for 79 which determines the (unique) point to the past of the field point x on the trajectory of the particle
from which an influence propagating at the speed of light reaches the position x at the time ¢t = 2°. The
corresponding time 70 /c on the trajectory is called the retarded time, tpo;. Thus

c(t —tret) = R.
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We also have
U-fo—r(m)] = 0% — r°(r)] ~ U - [x — x(70)]
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where we have as usual written u = ¢, and have defined the unit vector n which points from the point on
the trajectory r(7g) to the field point x by

x —r(79) = nR.

This results in
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In terms of the scalar ® and vector A, this is usually written as
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where the suffix ‘ret’ indicates that the time variable to be used is the retarded time tyot = ¢t — R/c. These
potentials are known as the Liénard- Wiechert potentials.
The Liénard-Wiechert potentials (or a direct calculation) may then be used to obtain
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in which
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is the acceleration of the particle. The contribution proportional to this is called the acceleration field, the
other term the wvelocity field. Note also that the velocity field falls away with increasing separation R like
R~2, whilst the acceleration field falls away more slowly, like R~!; for this reason the acceleration field is
dominant in what is called the far field region.

9.4 Fields Produced by a Moving Charged Particle: The Oscillator

An important special case is that of the radiation from a charge executing simple harmonic motion —
the charged oscillator. Let us write
r(t) =ae ™',
where we use the usual convention that the real part is to be taken, so that this really means r = a cos wt.
Then
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Let us also suppose |alw << ¢, so that the oscillator’s motion is never relativistic. Then at all times
1—pB-n=1. Also if we consider the field far from the oscillator, where |x| >> |a|, the distance R is always

well approximated by |x|. We then find
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In these equations x = Rn. The term proportional to % is called the near field, and that proportional to %

is the far, or radiation field. The Poynting vector is
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where 6 is the polar angle of the field point x with respect to a polar axis along the direction of the oscillation
of the charge a. A very similar result is obtained for the radiation from an oscillating dipole, and the sin® 8

dependence is characteristic of dipole radiation.

9.5 Fields Produced by a Moving Charged Particle: The General Case

It is easy to see that for general accelerated motion of a charged particle, we may write
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If furthermore the motion of the particle is non-relativistic, § << 1, we have
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where 6 is the angle between the dirction n of the field point and the instantaneous acceleration u of the
particle; and the radiation is polarised in the plane containing n and u. The total instantaneous power
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radiated is obtained by integration over angles, and using [ df sin? @ = 8m/3 one obtains the Larmor
formula:
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The Larmor formula has used 8 << 1, but if written in the form
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where p = mu is the momentum of the charge, it generalises to
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which is the Liénard formula.
9.6 Motion in a Circle
Specialising to the case of motion in a circle, where
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using that the radius p = ¢f/w for motion in a circle. The energy lost in a single revolution is thus AE = Px

the time for a single revolution,
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This synchrotron radiation loss can be very important for particles in accelerator or storage rings, and as we
shall see, this is particularly true for electron machines. Expressing AE in GeV, and p in km, the formula
above gives
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Consider for example HERA, the collider at DESY. This machine has a circumference of 6336 m, so we
may take the radius to be approximately 1 km. Positrons (or electrons) with an energy of 30 GeV are made
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to collide with protons with an energy of 820 GeV. For positrons mec? ~ 0.5 MeV, whilst for protons mc? ~1
GeV. With these data the formula for the energy loss per revolution gives

AFE ~ 80MeV for the positrons,
and only
~ 2.6 x 10 *MeV for the protons.

The power drain that maintaining the energy of the circulating beams imposes is very significant for positron
or electron machines. It is simple to derive

P(watts) ~ 10°AE(GeV).J(amps)
which with a current of 12 milliamps in the HERA positron beam gives around a Megawatt, or some 140

watts per metre! Of course in a machine such as the synchrotron source at Daresbury, the whole point of
the device is to produce a brilliant source of radiation.



