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and ( is small.

If the Hamiltonian is the sum of a stationary part (
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  (2.2)

unperturbed eigenfunctions and eigenvalues.

For the unperturbed case the general solution of the TDSE is:
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(as seen in Section 1.2) reduces to the time-independent conservative form:
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  (2.4)

and the unperturbed probability amplitudes:

Cn(0) = 
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are constant in time.

[2.1] DIRAC’s METHOD OF VARIATION OF CONSTANTS

If (V(r,t)  ( 0, the energy is not conserved.

N.B. The unperturbed case is conservative since <E> = 
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<E> is independent of time.

But even with the perturbation we express the new solutions in terms of the unperturbed functions, 
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  (2.5)

And allow the coefficients to vary with time.

We still need normalisation so, 
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From orthonormality of 
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 (2.7)

To calculate the Cn(t) substitute eq. (2.5) into the TDSE ( 
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but,

Ho
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So the 2nd and 3rd terms cancel giving:
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Take the scalar product of both sides of (2.9) with  <
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since <
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  (2.11)

is the matrix element of the perturbation.

Hence,
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  (2.12a)

and
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  = The Bohr Angular Frequency.

(2.12) represents a set of coupled linear differential equations.  We can write in a compact matrix form:
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(2.12b)

and the corresponding matrix would be ….
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These equations can be solved numerically, without further assumptions.  Perturbation theory requires the further assumption that ( is small.

[2.2] PERTURBATION EXPANSION.

Assume the perturbation is weak and expand the coefficients Cn in powers of (:
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  (2.13)

and substitute into (2.12)
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  (2.14)

Equate powers of (:

(o   :
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(2.15a)

0th order

(1   :
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(2.15b)

1st order

(2   :
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(2.15c)

2nd order

In principle we can integrate successively to any order.

1st Order Perturbation Correction.

Assume that initially (at t = to) the system is in a particular unperturbed state 
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Hence, in (2.15b) we have:   
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Hence, we have a correction to the initial state ( =
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   (2.16)

and a transfer of amplitude into other eigenstates, 
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The constant of integration is chosen so that:
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To 1st ORDER:  
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There has been a transfer of population to other eigenstates.  The probability of finding the system, initially in a state  
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, to now be in a state k ( 
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   (2.19)

while the change to initial state 
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, in the perturbative regime is:
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 (2.20)

then
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and the main effect of the perturbation is to change the phase of the initial quantum state.

2nd ORDER AMPLITUDES.

Sometimes we need to go to higher order eg. 1) if the 1st order correction vanishes, or 2) if ( is not small enough, so,

Cn =  
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We go back to eq (2.15c) :
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now substitute in the Cn(1) (
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(2.21)

So even if the matrix element V
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 = 0 ,  ie. No direct coupling from the initial to the final state, we can go 
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[2.3] A CONSTANT PERTURBATION

A simple example is given by a perturbation V(r) which is switched on at t = to and off again at t but is constant in between:
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For convenience choose to = 0 and ( = 1, so have three possibilities 
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If the system is in a state 
[image: image67.wmf]()

o

i

r

y

-

   at  t’< 0, at a later time t’ > t  (ie. After switch off), the amplitude for state ( is:
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and
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is just a number

So,    
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(2.23)

and the corresponding probability to 1st order is:
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 (2.24)

so we write
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The function, 

F(t,() = 
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F peaks sharply at about ( = 0

[image: image78.png]16 270





1) The width of the central peak (( = 
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2) Height of the peak is 
[image: image80.wmf]2

2

t


3) As time increases the peak get taller and thinner.  In fact,
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So for short times (short-lived perturbations), P  the probability allows almost any energy jump.  For long times, jumps with (
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From Eq. (2.25) the probability at time t is:
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(Eq. I.4d)
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We can define a transition probability per unit time, a transition rate

( = 
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Fermi’s ‘Golden Rule’.
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