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N.B. (Back to CST Perturbation)

For the constant perturbation if ( = 
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 , the correction to the initial state (as 2.19) is:

C
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Hence, (to 1st order) there is just a change in the energy of the state:    E
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[2.4] SLOWLY SWITCHED ON PERTURBATION

The sudden switch-on of the constant perturbation (ex. 2.3) leads to oscillations in the transition probability as a function of energy (see sine function).  But more realistic perturbations are switched on more gradually.

Assume it takes the form:  
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and Vo is independent of t.
Take the initial time to = -(  so V(r,to) = 0.

We cut off the calculation at finite t since V(r,t) ( (  as t ( +( but  ( is small so this is slow.

1ST: Calculate the matrix elements of the perturbation
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2ND:  Calculate the 1st order correction:
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The probability to 1st order is
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Compare w/ (2.25).  This is still peaked about (
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= 0, but does not have the oscillations of the sine function.

But it also reduces to the Fermi golden rule in the limit (=0.  Since
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So the transition rate:
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As ((0, 
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[2.5] ABSORPTION & EMISSION OF RADIATION: HARMONIC PERTURBATION

In this case the perturbation varies sinusoidally with time:

V(r,t) = 
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Assume the system is initially in an unperturbed eigenstate 
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Switch V(r,t) on at t’ = 0 and off at t’ = t.

FIRST: Work out the matrix element of the perturbation:
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where,

[image: image31.wmf]()()

()

oo

ii

AArAi

kk

yyk

=<>=<>

   

[or: 
[image: image32.wmf]()()

|()|||

oo

i

ArAi

k

yyk

<>=<>

 ?]




      (2.39)

Then substitute V
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Then 
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The corresponding transition probability is:
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We see from (2.41) the probability of finding the system in a state ( is only significant if either
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Since 
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Hence we assume only one is true and neglect interference terms between A
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which can be simplified to
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This takes the same form we obtained for the constant perturbation in Sec. 2.3
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where 
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F is still the sin2 function, peaked at
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 We can interpret the transitions as an absorption of a photon of energy 
[image: image54.wmf]w

h

.

Similarly if 
[image: image55.wmf]()()

oo

i

EE

k

w

=-

h

 only the first term in eq. 2.41 would contribute.  This process corresponds to stimulated emission of a photon.  In that case,
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for stimulated emission.

As before, we can define a rate for absorption / stimulated emission of photons, as t (( 
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THE DIPOLE APPROXIMATION

An atom with an excited electron is associated with a dipole moment: 
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=-


Energy of a dipole in an electric field is: 
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where 
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 is the unit polarisation vector of the electric field, 
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For a hydrogen atom: 
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 for z-polarized light

FURTHER EXAMPLE:

[2.6] SECOND ORDER CONSTANT PERTURBATION

The 2nd order coefficients are given by integrating eq. (2.20):
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If V is constant except between 
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Substituting in eq. 2.36
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Consider the integral only.

Note that  
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comes from the sudden ‘switch-on’ which gives the (1) in eq. 2.23.  Not usually important.

Only the first term conserves energy, ie. Only gives a contribution for 
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This is the same form as eq. (2.23).

So we can carry out a similar analysis to obtain a sin2 function for the probability and so forth.

In sum n (
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The 2nd order transition probability is generally important if the 1st order is not allowed, ie. If 
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The 2nd order coupling is: (modulus squared)
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It is convenient to think of the V
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SEC. 2.6 NATURAL LINE WIDTHS

In addition to stimulated emission and absorption of radiation we also have spontaneous emission of radiation by an atom.  While for the former, the EM field is treated classically, ie. 
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where  
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This is clearly not an eigenstate of Ho, the unperturbed Hamiltonian (verify this by substituting into the TDSE: you will find that 
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We can do FTs between Energy(Time domain rather than the p (
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Hence the energy distribution:
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‘LORENTZIAN’
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‘BREIT-WIGNER’ Distribution in nuclear physics
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