
8 Week 11

8.1 Gas giant planet formation

There are two basic models which have been proposed to explain the formation of gas
giant planets. The core accretion model postulates that the envelopes of gas giants
are accreted subsequent to the formation of a large core, which is itself assembled in
a manner analogous to terrestrial planet formation (or more accurately through ‘oli-
garchic growth’). Core accretion is the dominant theory for massive planet formation.
The gravitational instability model, on the other hand, is based on the idea that some
fraction of a massive protoplanetary disk might collapse directly to form massive plan-
ets. This has come under renewed theoretical scrutiny with the discovery of numerous
extrasolar planets with masses much larger than that of Jupiter.

In this section, we review the physics of these theories. We also discuss the obser-
vational constraints on the different theories, which include inferences as to the core
masses of the gas giants in the Solar System, the host metallicity/planet frequency
correlation for extrasolar planetary systems, and — indirectly — comparison of the
theoretically derived time scales with observations of protoplanetary disk lifetimes.
This is a critical issue, since gas giants must form prior to the dispersal of the gas
disk. Any successful model of massive planet formation must grow such bodies within
at most 5-10 Myr.

8.1.1 Core accretion model

The main stages in the formation of a gas giant via core accretion are illustrated
schematically in Figure 1. A core of rock and ice forms via the same mechanisms
that we have previously outlined for terrestrial planet formation. Initially, there is
either no atmosphere at all (because the gravitational potential is too shallow to hold
on to a bound atmosphere), or any gas is dynamically insignificant. However, as
the core grows, eventually it becomes massive enough to hold on to a significant
envelope. At first, the envelope is able to maintain hydrostatic equilibrium. The
core continues to grow via accretion of planetesimals, and the gravitational potential
energy liberated as these planetesimals rain down on the core provides the main source
of luminosity. This growth continues until the core reaches a critical mass. Once the
critical mass is reached, the envelope can no longer be maintained in hydrostatic
equilibrium. The envelope contracts on its own Kelvin-Helmholtz time scale (which
can be very long - millions of years), and eventually a phase of rapid gas accretion
occurs. This process continues until (a) the planet becomes massive enough to open
up a gap in the protoplanetary disk, thereby slowing down the rate of gas supply, or
(b) the gas disk itself is dispersed.

The novel aspect of the core accretion model is the existence of a critical core
mass. Numerical models have been computed which demonstrate the existence of a
maximum core mass, and show that it depends only weakly on the local properties
of the gas within the protoplanetary disk. Here, we show that a toy model in which
energy transport is due solely to radiative diffusion displays the key property of a
critical core mass.
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Figure 1: Illustration of the main stages of the core accretion model for giant planet
formation.
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Consider a core of mass Mcore and radius Rcore, surrounded by a gaseous envelope
of mass Menv. The total mass of the planet,

Mt = Mcore + Menv. (162)

The envelope extends from Rcore to some outer radius Rout, which marks the boundary
between the gas bound to the planet and the gas in the protoplanetary disk. Rout may
be determined by thermal effects (in which case Rout ∼ GMt/c

2
s, with cs the disk sound

speed – determined essentially from considering the escape velocity of gas particles
from the planet) or by tidal considerations (giving an outer radius of RHill), whichever
is the smaller. If the envelope is of low mass, then the largest contribution to the
luminosity is from accretion of planetesimals onto the core. This yields a luminosity,

L =
GMcoreṀcore

Rcore

(163)

which is constant through the envelope.
If we assume that radiative diffusion dominates the energy transport, then the

structure of the envelope is determined by the equations of hydrostatic equilibrium
and radiative diffusion,

dP

dr
= −

GM(r)

r2
ρ (164)

L

4πr2
= −

16

3

σT 3

κRρ

dT

dr
(165)

where σ is the Stefan-Boltzmann constant and κR the Rosseland mean opacity (here
assumed constant). Adopting an ideal gas equation of state,

P =
R

µ
ρT, (166)

where R is the gas constant and µ the mean molecular weight, and approximating the
derivatives in the above equations as ratios — i.e. dP/dr ∼ P/r — we obtain,

T ≃
( µ

R

) GMt

r
(167)

ρ ≃
64πσ

3κRL

( µ

R
GMt

)4 1

r3
(168)

In deriving these expressions we have additionally assumed that M(r) ≃ Mt, which
is reasonable if the envelope mass is not too large. Integrating the density profile we
obtain the envelope mass,

Menv =

∫ Rout

Rcore

4πr2ρ(r)dr

=
256π2σ

3κRL

( µ

R
GMt

)4

ln

(

Rout

Rcore

)

. (169)
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Figure 2: Solutions to equations (171) for the core mass Mcore and total mass Mtotal.
The blue curve is for a higher planetesimal accretion rate than for the red curve. The
critical core mass is shown as the vertical dashed line. One should not take solutions
to this toy model very seriously, but the numbers have been fixed here to correspond
roughly to the values obtained from real calculations.

Noting that for a uniform density core,

L ∝
McoreṀcore

Rcore

∝ M2/3
coreṀcore, (170)

and approximating the logarithmic terms as constants, we obtain finally,

Mt = Mcore +
K

κR

M4
t

M
2/3
coreṀcore

Mcore = Mt −
K

κR

M4
t

M
2/3
coreṀcore

. (171)

Here K absorbs the numerous ‘constant’ terms in equation (169).
Solutions to equation (171), which govern how the total planet mass depends on

the core mass, are plotted in figure 2. One sees that for fixed Ṁcore, there exists a
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maximum or critical core mass Mcrit beyond which no solution is possible. The physical
interpretation of this result is that if one tries to build a planet with a core mass above
the critical mass hydrostatic equilibrium cannot be achieved in the envelope. Rather
the envelope will contract, and further gas will fall in as fast as gravitational potential
energy can be radiated. This occurs because the luminosity provided by planetesimal
accretion provides too little thermal energy to the envelope to support it against the
gravity of the core.

This toy model should not be taken too seriously, but it does illustrate the most
important result from more detailed calculations — namely that the critical mass
increases with larger Ṁcore and with enhanced opacity. An approximate fit to published
results from computer simulations is given by,

Mcrit

M⊕
≈ 12

(

Ṁcore

10−6 M⊕yr−1

)1/4
(

κR

1 cm2g−1

)1/4

(172)

where the power-law indices are uncertain by around ±0.05. The weak dependence of
the critical core mass on the planetesimal accretion rate means that, within a particular
core accretion model, we can always speed up the approach to unstable gas accretion
simply by increasing the assumed surface density of planetesimals in the vicinity of the
growing core. But one still has to wait for a Kelvin-Helmholtz time for the envelope
to contract so that more gas can accrete onto the planet whose outer radius during
early phases is equal to the Hill sphere radius.

Existing calculations of giant planet formation via core accretion are very detailed,
and show that in general it required several million years to build a Jupiter (see the
accompanying power point slide). However, there are a number of uncertainties in
these models which provide considerable leaway in these time scale estimates:

• What is the magnitude of the opacity? Although κR enters equation (172)
as rather a weak power, its magnitude is highly uncertain. A couple of research
groups have recently computed new core accretion models in which the opacity
is reduced from the interstellar value by a factor of 50. This allows for much
more rapid formation of gas giants than was obtained in prior models. What
matters most is the opacity in the upper regions of the envelope. There is some
motivation for considering smaller values of the opacity due to grain growth and
settling in the planet atmosphere – but it remains unclear how accurately we
can determine what the appropriate value to use is.

• The neglect of Type I migration of growing cores. Theoretical work,
which we will discuss more fully in a subsequent section, suggests that planets
or planetary cores with masses exceeding 1M⊕ are highly vulnerable to radial
migration as a consequence of gravitational torques exerted by the gas disk. This
effect is not included in most calculations of growing planets, but the few research
groups to have examined this effect indicate that it can change formation time
scales considerably. In part this is because a larger core can be formed – because
it does not exhaust its feeding zone, resulting in the more rapid formation of a
gas giant planet.
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To summarize, the broad outlines of how core accretion works are well established, but
further work is needed to delineate under what circumstances (i.e. for what values of
the surface density, disk lifetime, migration rates and envelope opacity) it results in
successful formation of a massive planet.

8.1.2 Gravitational instability model

A sufficiently massive and/or cold gas disk is gravitationally unstable1. If — and this
is a big if — gravitational instability leads to fragmentation this can lead to massive
planet formation.

The necessary condition for gravitational instability to occur is that the Toomre
Q parameter be low enough, specifically,

Q ≡
csΩ

πGΣ
< Qcrit ≃ 1 (173)

where cs is the sound speed in a gas disk of local surface density Σ. This criterion
comes from considering the gravitational stability of a self-gravitating disc using a
linear perturbation analysis. If we consider a disk with h/r = 0.05 at 10 AU around a
Solar mass star, then the relation h/r = cs/vφ yields a sound speed cs ≃ 0.46 kms−1.
To attain Q = 1, we then require a surface density,

Σ ≈ 1.4 × 103 g cm2. (174)

This is much larger than estimates based, for example, on the minimum mass Solar
Nebula, from which we conclude robustly that gravitational instability is most likely to
occur at an early epoch when the disk mass is still high. The characteristic wavelength
for gravitational instability is given by λcrit = 2c2

s/(GΣ) (which is also obtained from
consideration of the gravitational stability of a disc using linear perturbation analysis),
so we find that the mass of objects formed if such a disk fragmented would be,

Mp ∼ πΣλ2
crit ∼

4πc4
s

G2Σ
∼ 3MJ (175)

where MJ is the mass of Jupiter. These order of magnitude estimates suffice to indicate
that gravitational instability followed by fragmentation could form gas giants.

It is also straightforward to derive where in the disk gravitational instability is
most likely to occur. Noting that in a steady-state accretion disk νΣ = Ṁ/(3π), we
use the α prescription ν = αc2

s/Ω and obtain,

Q ∝
c3
s

Ṁ
. (176)

The sound speed in a protoplanetary disk decreases outward, so a steady-state disk
becomes less stable at large radii. Indeed, unless the temperature becomes so low that

1The terminology used to discuss this process is potentially confusing. We will use the term

gravitational instability to refer to disks in which the self-gravity of the gas is significant enough to

alter the structure or evolution of the disk. Fragmentation refers to the case where gravitational

instability leads to the breakup of the disk into bound objects.

58



external irradiation (not that from the central star) dominates the heating, a steady-
state disk will become gravitational unstable provided only that it is large enough.

To derive sufficient conditions for fragmentation, we need to go beyond these el-
ementary considerations and ask what happens to a massive disk as instability is
approached. The critical point is that as Q is reduced, non-axisymmetric instabili-
ties set in which do not necessarily lead to fragmentation. Rather, the instabilities
generate spiral arms which both transport angular momentum and lead to dissipation
and heating. The dissipation in particular results in heating of the disk, which raises
the sound speed and makes fragmentation less likely. On a longer time scale, angular
momentum transport also leads to lower surface density and, again, enhanced stability.

Given these consideration, when will a disk fragment? Both analytic arguments
and local numerical simulations have been used to identify the cooling time as the
control parameter determining whether a gravitationally unstable disk will fragment.
For an annulus of the disk we can define the equivalent of the Kelvin-Helmholtz time
scale for a star,

tcool =
U

2σT 4
disk

(177)

where U is the thermal energy content of the disk per unit surface area. Then for an
ideal gas equation of state with γ = 5/3 the boundary for fragmentation is:

• tcool . 3Ω−1 — the disk fragments.

• tcool & 3Ω−1 — disk reaches a steady state in which heating due to dissipation
of gravitational turbulence balances cooling.

This condition is intuitively reasonable. Spiral arms resulting from disk self-gravity
compress patches of gas within the disk on a time scale that is to order of magnitude
Ω−1. If cooling occurs on a time scale that is shorter that Ω−1, the heating due to
adiabatic compression can be radiated away, and in the absence of extra pressure
collapse is likely.

None of the above is the subject of much theoretical doubt. Whether a massive
protoplanetary disk can fragment into massive planets depends upon its cooling time.
What remains controversial is whether the cooling time scale can, in fact, ever be
short enough. Analytic arguments suggest that attaining a short enough cooling time
scale is difficult, especially at small orbital radii, and that the most likely scenario
for fragmentation would involve very massive planets (or brown dwarfs) forming at
radii of the order of 50 or 100 AU. Simulations yield a contradictory picture at the
present time, with different research groups arguing for or against the possibility of
gravitational instability. Clearly there is more work to do in this area !

8.1.3 Comparison with observations

The architecture of the Solar System’s giant planets provides qualified support for
the core accretion model. The time scale for core accretion increases with orbital
radius, which is qualitatively consistent with the general trend of planetary properties
in the outer Solar System — Jupiter is closest to Solar composition (reflecting a fully
formed gas giant), while Saturn and the ice giants are relatively gas poor. Perhaps
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these outermost planets formed as the gas disk was in the process of being dispersed.
Explaining the origin of Uranus and Neptune as a consequence of disk fragmentation is
not easy. Moreover the core accretion time scale for the formation of Jupiter — about
8 Myr in the most detailed calculation — is reasonable for plausible assumptions.
Applying the model to extrasolar planetary systems, we would expect that a greater
surface density of planetesimals would lead to faster core growth and an increased
chance of reaching runaway gas accretion prior to disk dispersal. This is consistent
with the observed correlation of planet frequency with host star metallicity. It is
currently unclear whether this correlation — which appears to reflect the formation
process – could also be consistent with disk fragmentation.

Solar System observations also raise doubts about core accretion. The time scale
to form Neptune, in particular, is prohibitively long. This result is now normally
interpreted as an indication that Uranus and Neptune may not have formed in situ,
and as such cannot be used to argue against core accretion. It means, however, that the
ice giants are poor laboratories for testing core accretion. Potentially more seriously,
a combination of Galileo measurements and interior structure models places strong
constraints on the maximum core mass of Jupiter. Some models obtain an upper limit
on the core mass of Jupiter of 10M⊕ for the most optimistic choice of equation of
state (optimistic in the sense of yielding the weakest constraints). For some equations
of state the constraint on the core mass can be below 5M⊕

2. This is smaller than
predictions based on the simplest models of core accretion, and is completely consistent
with the zero core prediction of disk instability. However as we have already noted
fiducial core accretion models are based on particular choices of uncertain parameters
and as such should not be regarded as definitive. Currently, it seems reasonable to
believe that smaller core masses — perhaps as low as 5M⊕ — could be consistent
with plausible variants of the basic core accretion model. Of course if refinements to
the high pressure equation of state lead to the conclusion that Jupiter is genuinely
devoid of a core, then that would spell serious trouble for core accretion. Similarly
the discovery of massive planets at very large orbital radii — where disk instability
is most likely and the time scale for core accretion very large — appear to support
fragmentation models, though it may be hard to rule out the possibility that any such
planets formed closer to the star and migrated outward.

Although we have phrased this discussion in terms of either core accretion or disk
fragmentation providing a mechanism for massive planet formation, it of course re-
mains possible that both could be viable formation channels. If so, the most likely
scenario would see core accretion forming lower mass planets at small orbital radii,
while gravitational instability would yield very massive planets typically further out.
The existence of two channels could be inferred, for example, by looking for different

metallicity distributions of stars hosting high and low mass planets.

2The same exercise yields a core mass for Saturn of 10-20M⊕, in good accord with the expectations

of core accretion
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8.2 Planetary migration

The story is not over once planets have managed to form. Theoretical models, which
are now strongly supported by observations of the Solar System and of extrasolar
planetary systems, suggest at least three mechanisms that can lead to substantial
post-formation orbital evolution:

• Interaction between planets and the gaseous protoplanetary disk. This
leads to orbital migration as a consequence of angular momentum exchange be-
tween the planet and the gas disk, and can be important for both terrestrial-mass
planets and gas giants while the gas disk is still present. Gas disk migration pro-
vides the standard theoretical explanation for the existence of hot Jupiters.

• Interaction between planets and a remnant planetesimal disk. Planets,
especially giant planets, can also exchange angular momentum by interacting
with and ejecting planetesimals left over from the planet formation process.
This mechanism appears likely to have caused orbital migration of at least the
ice giants, and possibly also Saturn, during the early history of the Solar System.

• Interaction within an initially unstable system of two or more mas-

sive planets. There is no guarantee that the architecture of a newly formed
planetary system will be stable over the long run. Instabilities can lead to planet-
planet scattering, which usually results in the ejection of the lower mass planets,
leaving the survivors on eccentric orbits. This could be the origin of the typically
eccentric orbits seen in extrasolar planetary systems.

In this section we discuss the first of these mechanisms, and we will discuss the second
mechanism next week.

8.3 Gas disk migration

The most detailed calculations of the rate of angular momentum exchange between a
planet and a gas disk are based on summing the torques exerted at discrete resonances

within the disk. This calculation is too lengthy and technical to reproduce here. Here
we summarize the conditions for resonances to exist, and discuss the effect of the
torques on the planet and on the disk in the limits of high and low planet masses.

8.3.1 Conditions for resonance

We consider a planet orbiting a star on a circular orbit with angular frequency Ωp. A
standard exercise in dynamics (e.g. Binney & Tremaine 1987) yields the conditions
for resonances. A corotation resonance exists for radii in the disk where the angular
frequency Ω,

Ω = Ωp. (178)

Lindblad resonances exist when,

m(Ω − Ωp) = ±κ0 (179)
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m=3

P=2Pplanet

m=1
m=2

Figure 3: Nominal locations of the corotation (red) and Lindblad resonances (blue)
for a planet on a circular orbit. Only the low order Lindblad resonances are depicted
— there are many more closer to the planet.

where m is an integer and κ0, the epicyclic frequency, is defined as,

κ0 ≡

(

d2Φ0

dr2
+ 3Ω2

)

(180)

with Φ0 the stellar gravitational potential. The epicyclic frequency, κ0, is the natural
frequency of radial oscillation for an orbiting particle, and the Lindblad resonances
occur at locations where the forcing frequency (as seen by the perturbed particle) is
equal to the natural oscillation frequency. For a Keplerian potential κ0 = Ω. If we
approximate the angular velocity of gas in the disk by the Keplerian angular velocity,
the Lindlad resonances are located at,

rL =

(

1 ±
1

m

)2/3

rp (181)

where rp is the planet orbital radius. The locations of some of the low order (small
m) resonances are shown in Figure 3. For an orbiting test particle, the resonances are
locations where the planet can be a strong perturbation to the motion. For a gas disk,
angular momentum exchange between the planet and the gas disk occurs at resonant
locations.
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Figure 4: Schematic illustration of the smoothed torque density due to angular momen-
tum exchange between a planet and a gas disk at the location of Lindblad resonances,
after [?]. The peak torque occurs at r ≈ rp ± h. The disk gains angular momentum
from the planet as a result of the interaction for r > rp, and loses angular momentum
for r < rp. The interaction is almost invariably asymmetric, such that when integrated
over the entire disk the planet loses angular momentum and migrates inward.

8.3.2 Gravitational torques at resonances

For a planet on a circular orbit embedded within a geometrically thin protoplanetary
disk, angular momentum exchange between the planet and the gas occurs at the loca-
tion of the resonances defined by equation (178) and (179). The sense of the exchange
is that,

• The planet gains angular momentum from interacting with the gas disk at the
interior Lindblad resonances (rL < rp). This tends to drive the planet outward.
The gas loses angular momentum, and moves inward.

• The planet loses angular momentum from interacting with the gas disk at
exterior Lindblad resonances (rL > rp). This tends to drive the planet toward
the star. The gas gains angular momentum, and moves outward.

Notice that the gravitational interaction of a planet with a gas disk tends — somewhat
counter-intuitively — to repel gas from the vicinity of the planet’s orbit.

The flux of angular momentum exchanged at each Lindblad resonance can be
written as,

TLR(m) ∝ ΣM2
p fc(ξ) (182)

where Σ is the gas density and Mp the planet mass. That the torque should scale
with the square of the planet mass is intuitively reasonable — the perturbation to the
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disk surface density scales as the planet mass in the linear regime so the torque scales
as M2

p . The factor fc(ξ) is the torque cutoff function, which encodes the fact that
resonances very close to the planet contribute little to the net torque, and ξ is defined
by r = rp ± ξ. The torque cutoff function peaks at,

ξ ≡ m
( cs

rΩ

)

p
≃ 1 (183)

i.e. at a radial location r ≃ rp ± h, where h is the disk scale height (this result
immediately implies that a three-dimensional treatment is necessary for the dominant
resonances if the planet is completely embedded within a gas disk, as is the case for
low mass planets). The strength of the torque exerted at each resonance is essentially
independent of properties of the disk such as the disk viscosity, though of course the
viscosity still matters inasmuch as it controls the value of the unperturbed disk surface
density Σ.

Figure 4 illustrates the differential torque exerted on the disk by the planet, after
smoothing over the Lindblad resonances. The flux of angular momentum is initially
deposited in the disk as waves, which propagate radially before dissipating. The details
of this dissipation matter little for the net rate of angular momentum exchange.

Angular momentum transfer at the corotation resonance requires additional con-
sideration. In a two-dimensional disk, the rate of angular momentum deposition at
corotation is proportional

TCR ∝
d

dr

(

Σ

B

)

(184)

where B is the Oort parameter,

B(r) = Ω +
r

2

dΩ

dr
. (185)

This implies that in a two-dimensional disk, the corotation torque vanishes identically
in the moderately interesting case of a disk with a surface density profile Σ ∝ r−3/2.

8.3.3 Type I migration

For low mass planets (generically Mp ∼ M⊕, though the exact mass depends upon the
disk properties) the angular momentum flux injected into the disk as a consequence
of the planet-disk interaction is negligible when compared to the viscous transport
of angular momentum. As a result, the gas surface density profile Σ(r) remains ap-
proximately unperturbed, gas is present at the location of each of the resonances, and
the net torque on the planet is obtained by summing up the torque exerted at each
resonance. Schematically,

Tplanet =
∑

ILR

TLR +
∑

OLR

TLR + TCR (186)

where the planet gains angular momentum from the inner Lindblad resonances (ILR)
and loses angular momentum to the outer Lindblad resonances (OLR). Changes to
the planet’s orbit as a result of this net torque are called Type I migration.
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As noted above (equation 182) the torque exerted at each resonance scales as the
planet mass squared. If the azimuthally averaged surface density profile of the gas
disk remains unperturbed, it follows that the total torque will also scale as M2

p and
the migration time scale,

τI =
Jp

Tplanet

=
MpR

2
pΩp

Tplanet

∝ M−1
p . (187)

Type I migration is therefore most rapid for the largest body for which the assumption
that the gas disk remains unaffected by the planet remains valid.

Invariably it is found that the Lindblad resonances exterior to the planet are more
powerful than those interior (in large part because they lie closer to the planet due to
partial pressure support in the disk causing the disc to rotate with a sub-Keplerian
angular velocity), so that the net torque due to Lindblad resonances leads to inward

migration. The torque at corotation is of opposite sign and of comparable magnitude
to the net Lindblad torque, but is not usually strong enough to reverse the sense of
migration. Note that one might think (for example by looking at the surface density
dependence of the torque in equation 182) that the sense of migration ought to depend
upon the surface density gradient — i.e. that a steep surface density profile should
strengthen the inner resonances relative to the outer ones and hence drive outward
migration. This is not true. Pressure gradients (which depend upon the radial depen-
dence of the surface density and temperature) alter the angular velocity in the disk
from its Keplerian value, and thereby shift the radial location of resonances from their
nominal positions. A steep surface density profile implies a large pressure gradient,
so that all the resonances move slightly inward. This weakens the inner Lindblad
resonance relative to the outer ones, in such a way that the final dependence on the
surface density profile is surprisingly weak.

For a 3D isothermal disk in which,

Σ(r) ∝ r−γ (188)

the migration time scale is given by,

τI ≡ −
rp

ṙp

= (2.7 + 1.1γ)−1M∗

Mp

M∗

Σpr2
p

(

cs

rpΩp

)2

Ω−1
p , (189)

where Σp, cs and Ωp are respectively the gas surface density, gas sound speed, and
angular velocity at the location of a planet orbiting at distance rp from a star of
mass M∗. As expected based on the simple considerations discussed previously, the
migration rate (∝ τ−1

I ) scales linearly with both the planet mass and the local disk
mass. The time scale becomes shorter for cooler, thinner disks — provided that the
interaction remains in the Type I regime — since for such disks more resonances close
to the planet contribute to the net torque.

Figure 5 shows the predicted migration time scale as a function of radius for a
5M⊕ core in a disk with h/r = 0.05 and Σ ∝ r−1. Two disk masses are plotted,
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Figure 5: The inward Type I migration time scale for a 5M⊕ core as a function of
orbital radius, calculated using the three-dimensional isothermal disk formula of [?].
The lower curve assumes a disk with Σ ∝ r−1, h/r = 0.05, and a total mass of 0.01M⊙

within 30 AU. The upper curve shows the migration time scale in a similar disk with a
mass of only 0.001M⊕ — the absolute minimum needed to form a Jupiter mass planet.
The red dashed line illustrates a typical estimate for the lifetime of the gas disk.
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one in which the disk mass interior to 30 AU is 10−2M⊙, and one in which the disk
mass is 10−3M⊙. As is obvious from the figure, the migration time scale from radii
close to the snow line is a small fraction of the disk lifetime for the more massive disk
model. One concludes that — unless the torque calculation is missing essential physics
that qualitatively changes the answer — Type I migration is likely to be an essential
element of giant planet formation via core accretion. Only if the disk mass is very
low (almost the absolute minimum needed to form a gas giant at all) can the effects
of Type I migration be reduced. It may be that achieving successful planet formation
via core accretion requires waiting until the gas disk is weak enough to slow Type I
migration to a manageable rate.

8.4 Gap formation by a giant planet and type II migration

The discussion presented in the previous section shows that solid planetary cores are
able to form within the life time of a protoplanetary accretion disc. Detailed calcula-
tions indicate that a solid core containing ∼ 15 MEarth needs to form before a gas giant
planet (e.g. Jupiter) can form by the accretion of gas onto the solid core. For core
masses lower than this the disc gas remains hydrostatically supported, and a gas giant
planet is unable to form. In order to form such a massive core within the life time of
protostellar discs, it must form beyond a radius of ∼ 3 – 5 AU where the temperature
in the nebula is such that ices can begin to form. These ices augment the amount
of solid material available, and may increase the ability of solids to stick on impact.
Once a ∼ 15 MEarth core forms, the gas accretion process requires between 106 – 107

yr.

High mass planets interact tidally with the accretion disc, and can form gaps within
them. Angular momentum exchange between the planet and disc can cause orbital
migration, but the basic picture for high mass planets differs from that just discussed
for low-mass, non gap forming planets.

8.4.1 Gap Formation Criterion

We will use a simple impulse approximation to calculate the angular momentum ex-
change between a disc and a planet.

We will work in a reference frame rotating with the planet at radius R. The
material exterior to the planet orbital radius streams past with an unperturbed speed
u = −R Ω′ x, where Ω′ = dΩ/dR. Let the impact parameter be a. The material suffers
a deflection as it streams past the planet.

The equation of motion of the material that streams past the planet is

dvx

dt
= −

Gmpx

(x2 + y2)3/2
. (190)

We now set x = a and y = ut, so that equation (190) becomes

dvx

dt
= −

G mp a

(a2 + u2t2)3/2
. (191)
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with velocity u(x)

The change in vx during the encounter is then

∆vx =

∫ ∞

−∞

−
G mp a dt

(a2 + u2t2)3/2
. (192)

Making the substitution ut = a tan θ we obtain

∆vx = −

∫ π/2

−π/2

G mp a2 sec2 θdθ

ua3 sec3 θ
= −

2Gmp

ua
. (193)

Thus,

(∆vx)
2 =

4(G mp)
2

u2a2
.

But the total kinetic energy change due to the encounter = 0, so

|vy + ∆vy|
2 + (∆vx)

2 = v2
y

and assuming that ∆vy ≪ vy we find that

∆vy = −
(∆vx)

2

2u
= −

2(Gmp)
2

u3a2
. (194)
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The angular momentum exchanged is R∆vy per unit mass. The rate of angular mo-
mentum exchange, J̇ is given by the amount of angular momentum exchange per
encounter divided by the time between each encounter. The time between each en-
counter is given by

2πR

|Ω′aR|

Thus we can write an equation for J̇ as follows

J̇ =

∫ ∞

amin

(

2R(Gmp)
2

u3a2

)

2πRΣ da
(

2πR
|Ω′aR|

) . (195)

Setting u = |Ω′Ra| we get

J̇ =

∫ ∞

amin

2(Gmp)
2R3Σa|Ω′|

Ω′3R4a5
da

=

∫ ∞

amin

2(Gmp)
2Σ

(

3Ω
2R

)2
a4R

da . (196)

Integrating gives the rate at which angular momentum is given to the outer disc
material by the planet

J̇ =
8(Gmp)

2ΣR2

27Ω2a3
minR

=
8

27

(

mp

M⊙

)2

ΣR4

(

R

amin

)3

Ω2 (197)

where we have assumed that the central star is one solar mass. Note that the angular
momentum exchange is smaller for a wider gap.

For a massive gas giant planet we set amin = planet Hill sphere radius = R(q/3)1/3

where q = mp/M⊙ assuming the central star is one solar mass. This gives

J̇ =
24

27

(

mp

M⊙

)2
ΣR2M⊙

mp

R2Ω2

=

(

24

27

)

mp

M⊙
(ΣR2)(R2Ω2) . (198)

The condition for a gap to form is that the tidal torques acting on the disc due to
the planet be greater than the internal viscous torques acting in the disc. Thus we
obtain

(

24

27

)

mp

M⊙
(ΣR2)(R2Ω2) > −2πR3Σν

(

dΩ

dR

)

= 3πR2ΣΩν (199)

which may be written
mp

M⊙

>
∼

10 ν

R2 Ω
(200)

For H/R ∼ 0.04 and α = 6 × 10−3, ν/(R2Ω) ∼ 10−5 and gap formation occurs for

mp

M⊙

>
∼

MJ

10

(i.e. in the Jupiter mass range).
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8.4.2 The Type II migration rate

Once a planet becomes massive enough to open a gap, orbital evolution is predicted
to occur on the same local time scale as the protoplanetary disk. The radial velocity
of gas in the disk is,

vr = −
Ṁ

2πrΣ
, (201)

which for a steady disk away from the boundaries can be written as,

vr = −
3

2

ν

r
. (202)

If the planet enforces a rigid tidal barrier at the outer edge of the gap, then evolution
of the disk will force the orbit to shrink at a rate ṙp ≃ vr, provided that the local disk
mass exceeds the planet mass, i.e. that πr2

pΣ & Mp. This implies a nominal Type II
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migration time scale of

τ0 =
2

3α

(

h

r

)−2

p

Ω−1
p . (203)

For h/r = 0.05 and α = 10−2, the migration time scale at 5 AU is of the order of
0.5 Myr.

These estimates of the Type II migration velocity assume that once a gap has
been opened, the planet maintains an impermeable tidal barrier to gas inflow. In fact,
simulations show that planets are able to accrete gas via tidal streams that bridge the
gap. The effect is particularly pronounced for planets only just massive enough to
open a gap in the first place, so in reality planets can form gaps, migrate, and grow
at the same time.
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